miércoles, 12 de mayo de 2010
Acidos nucleicos
El descubrimiento de los ácidos nucleicos se debe a Friedrich Miescher, quien en el año 1869 aisló de los núcleos de las células una sustancia ácida a la que llamó nucleína, nombre que posteriormente se cambió a ácido nucleico.
Existen dos tipos de ácidos nucleicos: ADN (ácido desoxirribonucleico) y ARN (ácido ribonucleico), que se diferencian:
por el glúcido (pentosa) que contienen: la desoxirribosa en el ADN y la ribosa en el ARN;
por las bases nitrogenadas que contienen: adenina, guanina, citosina y timina, en el ADN; adenina, guanina, citosina y uracilo, en el ARN;
en los organismos eucariotas, la estructura del ADN es de doble cadena, mientras que la estructura del ARN es monocatenaria, aunque puede presentarse en forma extendida, como el ARNm, o en forma plegada, como el ARNt y el ARNr, y
en la masa molecular: la del ADN es generalmente mayor que la del ARN.
Las unidades que forman los ácidos nucleicos son los nucleótidos. Cada nucleótido es una molécula compuesta por la unión de tres unidades: un monosacárido de cinco carbonos (una pentosa, ribosa en el ARN y desoxirribosa en el ADN), una base nitrogenada purínica (adenina, guanina) o pirimidínica (citosina, timina o uracilo) y uno o varios grupos fosfato (ácido fosfórico). Tanto la base nitrogenada como los grupos fosfato están unidos a la pentosa.
La unión formada por la pentosa y la base nitrogenada se denomina nucleósido. Cuando lleva unido una unidad de fosfato al carbono 5' de la ribosa o desoxirribosa y dicho fosfato sirve de enlace entre nucleótidos, uniéndose al carbono 3' del siguiente nucleótido; se denomina nucleótido-monofosfato (como el AMP) cuando hay un solo grupo fosfato, nucleótido-difosfato (como el ADP) si lleva dos y nucleótido-trifosfato (como el ATP) si lleva tres.
Listado de las bases nitrogenadas [editar]Las bases nitrogenadas conocidas son:
adenina, presente en ADN y ARN
guanina, presente en ADN y ARN
citosina, presente en ADN y ARN
timina, exclusiva del ADN
uracilo, exclusiva del ARN
ADN
El ADN es bicatenario, está constituido por dos cadenas polinucleotídicas unidas entre sí en toda su longitud. Esta doble cadena puede disponerse en forma lineal (ADN del núcleo de las células eucarióticas) o en forma circular (ADN de las células procarióticas, así como de las mitocondrias y cloroplastos eucarióticos). La molécula de ADN porta la información necesaria para el desarrollo de las características biológicas de un individuo y contiene los mensajes e instrucciones para que las células realicen sus funciones. Dependiendo de la composición del ADN (refiriéndose a composición como la secuencia particular de bases), puede desnaturalizarse o romperse los puentes de hidrógenos entre bases pasando a ADN de cadena simple o ADNsc abreviadamente.
ARN
El ARN difiere del ADN en que la pentosa de los nucleótidos constituyentes es ribosa en lugar de desoxirribosa, y en que, en lugar de las cuatro bases A, G, C, T, aparece A, G, C, U (es decir, uracilo en lugar de timina). Las cadenas de ARN son más cortas que las de ADN, aunque dicha característica es debido a consideraciones de carácter biológico, ya que no existe limitación química para formar cadenas de ARN tan largas como de ADN, al ser el enlace fosfodiéster químicamente idéntico. El ARN está constituido casi siempre por una única cadena (es monocatenario), aunque en ciertas situaciones, como en los ARNt y ARNr puede formar estructuras plegadas complejas.
Acidos nucleicos artificiales
Existen, aparte de los naturales, algunos ácidos nucleicos no presentes en la naturaleza, sintetizados en el laboratorio.
Ácido nucleico peptídico, donde el esqueleto de fosfato-(desoxi)ribosa ha sido sustituido por 2-(N-aminoetil)glicina, unida por un enlace peptídico clásico. Las bases púricas y pirimidínicas se unen al esqueleto por el carbono carbonílico. Al carecer de un esqueleto cargado (el ión fosfato lleva una carga negativa a pH fisiológico en el ADN/ARN), se une con más fuerza a una cadena complementaria de ADN monocatenario, al no existir repulsión electrostática. La fuerza de interacción crece cuando se forma un ANP bicatenario. Este ácido nucleico, al no ser reconocido por algunos enzimas debido a su diferente estructura, resiste la acción de nucleasas y proteasas.
Morfolino y ácido nucleico bloqueado (LNA, en inglés). El morfolino es un derivado de un ácido nucleico natural, con la diferencia de que usa un anillo de morfolina en vez del azúcar, conservando el enlace fosfodiéster y la base nitrogenada de los ácidos nucleicos naturales. Se usan con fines de investigación, generalmente en forma de oligómeros de 25 nucleótidos. Se usan para hacer genética inversa, ya que son capaces de unirse complementariamente a pre-ARNm, con lo que se evita su posterior recorte y procesamiento. También tienen un uso farmacéutico, y pueden actuar contra bacterias y virus o para tratar enfermedades genéticas al impedir la traducción de un determinado ARNm.
Ácido nucleico glicólico. Es un ácido nucleico artificial donde se sustituye la ribosa por glicerol, conservando la base y el enlace fosfodiéster. No existe en la naturaleza. Puede unirse complementariamente al ADN y al ARN, y sorprendentemente, lo hace de forma más estable. Es la forma químicamente más simple de un ácido nucleico y se especula con que haya sido el precursor ancestral de los actuales ácidos nucleicos.
Ácido nucleico treósico. Se diferencia de los ácidos nucleicos naturales en el azúcar del esqueleto, que en este caso es una treosa. Se han sintetizado cadenas híbridas ATN-ADN usando ADN polimerasas. Se une complementariamente al ARN, y podría haber sido su precursor.
Aminoacidos
Son sustancias cristalinas, casi siempre de sabor dulce; tienen carácter ácido como propiedad básica y actividad óptica; químicamente son ácidos carbónicos con, por lo menos, un grupo amino por molécula, 20 aminoácidos diferentes son los componentes esenciales de las proteínas.
Los aminoácidos son las unidades elementales constitutivas de las moléculas denominadas Proteínas. Son pues, y en un muy elemental símil, los "ladrillos" con los cuales el organismo reconstituye permanentemente sus proteínas específicas consumidas por la sola acción de vivir.
Proteínas que son los compuestos nitrogenados más abundantes del organismo, a la vez que fundamento mismo de la vida. En efecto, debido a la gran variedad de proteínas existentes y como consecuencia de su estructura, las proteínas cumplen funciones sumamente diversas, participando en todos los procesos biológicos y constituyendo estructuras fundamentales en los seres vivos. De este modo, actúan acelerando reacciones químicas que de otro modo no podrían producirse en los tiempos necesarios para la vida (enzimas), transportando sustancias (como la hemoglobina de la sangre, que transporta oxígeno a los tejidos), cumpliendo funciones estructurales (como la queratina del pelo), sirviendo como reserva (albúmina de huevo), etc.
Lista de Aminoácidos (Esenciales y no esenciales) y función de cada una de ellos:
Alanina: Función: Interviene en el metabolismo de la glucosa. La glucosa es un carbohidrato simple que el organismo utiliza como fuente de energía.
Arginina: Función: Está implicada en la conservación del equilibrio de nitrógeno y de dióxido de carbono. También tiene una gran importancia en la producción de la Hormona del Crecimiento, directamente involucrada en el crecimiento de los tejidos y músculos y en el mantenimiento y reparación del sistema inmunologico.
Asparagina: Función: Interviene específicamente en los procesos metabólicos del Sistema Nervioso Central (SNC).
Acido Aspártico: Función: Es muy importante para la desintoxicación del Hígado y su correcto funcionamiento. El ácido L- Aspártico se combina con otros aminoácidos formando moléculas capases de absorber toxinas del torrente sanguíneo.
Citrulina: Función: Interviene específicamente en la eliminación del amoníaco.
Cistina: Función: También interviene en la desintoxicación, en combinación con los aminoácidos anteriores. La L - Cistina es muy importante en la síntesis de la insulina y también en las reacciones de ciertas moléculas a la insulina.
Cisteina: Función: Junto con la L- cistina, la L- Cisteina está implicada en la desintoxicación, principalmente como antagonista de los radicales libres. También contribuye a mantener la salud de los cabellos por su elevado contenido de azufre.
Glutamina: Función: Nutriente cerebral e interviene específicamente en la utilización de la glucosa por el cerebro.
Acido Glutáminico: Función: Tiene gran importancia en el funcionamiento del Sistema Nervioso Central y actúa como estimulante del sistema inmunologico.
Glicina: Función: En combinación con muchos otros aminoácidos, es un componente de numerosos tejidos del organismo.
Histidina: Función: En combinación con la hormona de crecimiento (HGH) y algunos aminoácidos asociados, contribuyen al crecimiento y reparación de los tejidos con un papel específicamente relacionado con el sistema cardio-vascular.
Serina: Función: Junto con algunos aminoácidos mencionados, interviene en la desintoxicación del organismo, crecimiento muscular, y metabolismo de grasas y ácidos grasos.
Taurina: Función: Estimula la Hormona del Crecimiento (HGH) en asociación con otros aminoácidos, esta implicada en la regulación de la presión sanguinea, fortalece el músculo cardiaco y vigoriza el sistema nervioso.
Tirosina: Función: Es un neurotransmisor directo y puede ser muy eficaz en el tratamiento de la depresión, en combinación con otros aminoácidos necesarios.
Ornitina: Función: Es específico para la hormona del Crecimiento (HGH) en asociación con otros aminoácidos ya mencionados. Al combinarse con la L-Arginina y con carnitina (que se sintetiza en el organismo, la L-Ornitina tiene una importante función en el metabolismo del exceso de grasa corporal.
Prolina: Función: Está involucrada también en la producción de colágeno y tiene gran importancia en la reparación y mantenimiento del músculo y huesos.
Los Ocho (8) Esenciales
Isoleucina: Función: Junto con la L-Leucina y la Hormona del Crecimiento intervienen en la formación y reparación del tejido muscular.
Leucina: Función: Junto con la L-Isoleucina y la Hormona del Crecimiento (HGH) interviene con la formación y reparación del tejido muscular.
Lisina: Función: Es uno de los más importantes aminoácidos porque, en asociación con varios aminoácidos más, interviene en diversas funciones, incluyendo el crecimiento, reparación de tejidos, anticuerpos del sistema inmunológico y síntesis de hormonas.
Metionina: Función: Colabora en la síntesis de proteínas y constituye el principal limitante en las proteínas de la dieta. El aminoácido limitante determina el porcentaje de alimento que va a utilizarse a nivel celular.
Fenilalanina: Función: Interviene en la producción del Colágeno, fundamentalmente en la estructura de la piel y el tejido conectivo, y también en la formación de diversas neurohormonas.
Triptófano: Función: Está inplicado en el crecimiento y en la producción hormonal, especialmente en la función de las glándulas de secreción adrenal. También interviene en la síntesis de la serotonina, neurohormona involucrada en la relajación y el sueño.
Treonina: Función: Junto con la con la L-Metionina y el ácido Aspártico ayuda al hígado en sus funciones generales de desintoxicación.
Valina: Función: Estimula el crecimiento y reparación de los tejidos, el mantenimiento de diversos sistemas y balance de nitrógeno.
Debemos recordar que, debido a la crítica relación entre los diversos aminoácidos y los aminoácidos limitantes presentes en cualquier alimento. Solo una proporción relativamente pequeña de aminoácidos de cada alimento pasa a formar parte de las proteínas del organismo. El resto se usa como fuente de energía o se convierte en grasa si no debe de usarse inmediatamente.
Productos naturales que contienen las cantidades medias de aminoácidos que se usan en realidad a nivel celular
Cantidades en gramos
Almendras (1 taza) 1.00 gr.
Semillas de girasol crudas (1 taza) 1.28 gr.
Arroz Integral (1 taza) 0.47 gr.
Cebada (1 taza) 0.90 gr.
Guisantes (1 taza) 0.27 gr.
Habichuelas rojas (1 taza) 0.85 gr.
Semillas de Ajonjolí (1 taza) 0.89 gr.
Pan integral (1 rebanada) 0.14 gr.
Spaghetti Harina Integral (1 taza) 0.65 gr.
Todos los demás vegetales (1 taza) 0.27 gr.
Productos aminales que contienen las cantidades medias de aminoacidos que se usan en realidad a nivel celular
Cantidades en gramos
Leche (1 taza) 0.29 gr.
Una clara de huevo 1.63 gr.
Huevo completo (aminoácidos limitantes) 0.70 gr.
Pescado (1/4 libra) 0.21 gr.
Hígado (1/4 libra) 0.78 gr.
Queso blanco (1/4 taza) 0.26 gr.
Carne de res (1/2 libra) 1.49 gr.
Carne de cerdo (1/4 libra) 0.69 gr.
Pavo (1/4 libra) utilización muy limitada de aminoácidos. gr.
Pollo (1/4 libra) 0.95 gr.
Cordero o Cabro (1/2 libra) 1.54 gr.
Para saber la cantidad media de aminoácidos que necesitamos al día, se multiplica el peso corporal en kilos (1000 gramos) 0.12 %.
La libra americana es de 450 gramos. Si el peso son 146 libras multiplica por 450 gramos y luego los divide por 1000 da el peso en kilos.
Ejemplo: una persona que pesa 146 libras americanas, lo multiplicado por 450 gramos es igual a 65700 y lo dividimos por 1000 es igual a 65.70 kilos.
146 x 450 = 65.700 gramos
65.700 - 1000 = 65.70 kilos.
Valor biológico de las proteínas
El conjunto de los aminoácidos esenciales sólo está presente en las proteínas de origen animal. En la mayoría de los vegetales siempre hay alguno que no está presente en cantidades suficientes. Se define el valor o calidad biológica de una determinada proteína por su capacidad de aportar todos los aminoácidos necesarios para los seres humanos. La calidad biológica de una proteína será mayor cuanto más similar sea su composición a la de las proteínas de nuestro cuerpo. De hecho, la leche materna es el patrón con el que se compara el valor biológico de las demás proteínas de la dieta.
Por otro lado, no todas las proteínas que ingerimos se digieren y asimilan. La utilización neta de una determinada proteína, o aporte proteico neto, es la relación entre el nitrógeno que contiene y el que el organismo retiene. Hay proteínas de origen vegetal, como la de la soja, que a pesar de tener menor valor biológico que otras proteínas de origen animal, su aporte proteico neto es mayor por asimilarse mucho mejor en nuestro sistema digestivo.
jueves, 15 de abril de 2010
HORMONAS
CLASIFICACION QUIMICA DE LAS HORMONAS
Las hormonas pertenecen a tres grupos de compuestos: esteroides, polipéptidos y derivados de ácidos aminados. TIPOS DE HORMONAS
Según su naturaleza química, se reconocen dos grandes tipos de hormonas:Hormonas peptídicas. Son derivados de aminoácidos (como las hormonas tiroideas), o bien oligopéptidos (como la vasopresina) o polipéptidos (como la hormona del crecimiento). En general, este tipo de hormonas no pueden atravesar la membrana plasmática de la célula diana, por lo cual los receptores para estas hormonas se hallan en la superficie celular. Las hormonas tiroideas son una excepción, ya que se unen a receptores específicos que se hallan en el núcleo. Hormonas lipídicas. Son esteroides (como la testosterona) o eicosanoides (como las prostaglandinas). Dado su carácter lipófilo, atraviesan sin problemas la bicapa lipídica de las membranas celulares y sus receptores específicos se hallan en el interior de la célula diana. FARMACOLOGÍA
Una gran cantidad de hormonas son usadas como medicamentos. Las más comúnmente usadas son estradiol y progesterona en las píldoras anticonceptivas y en la terapia de reemplazo hormonal, la tiroxina en forma de levotiroxina en el tratamiento para el hipotiroidismo, los corticoides para enfermedades autoinmunes, trastornos respiratorios severos y ciertos cuadros alérgicos. La insulina es usada por muchos diabéticos. Preparaciones locales usadas en otorrinolaringología frecuentemente contienen equivalentes a la adrenalina. Los esteroides y la vitamina D son componentes de ciertas cremas que se utilizan en dermatología.
FEROMONAS
Las feromonas son sustancias químicas secretadas por un individuo con el fin de provocar un comportamiento determinado en otro individuo de la misma u otra especie. Son por tanto un medio de señales cuyas principales ventajas son el gran alcance y la evitación de obstáculos, puesto que son arrastradas por el aire. Viene del griego y significa "llevo excitación". Algunas mariposas como la Saturnia pyri son capaces de detectar el olor de la hembra a 20,00 Km. de distancia.
miércoles, 17 de marzo de 2010
VITAMINAS
Conociendo la relación entre el aporte de nutrientes y el aporte energético, para asegurar el estado vitamínico correcto, es siempre más seguro privilegiar los alimentos de fuerte densidad nutricional (legumbres, cereales y frutas) por sobre los alimentos meramente calóricos. Las vitaminas no producen energía y por tanto no implican calorías. Intervienen como catalizador en las reacciones bioquímicas provocando la liberación de energía. En otras palabras, la función de las vitaminas es la de facilitar la transformación que siguen los sustratos a través de las vías metabólicas.
Son las que se disuelven en grasas y aceites. Se almacenan en el hígado y en los tejidos grasos, debido a que se pueden almacenar en la grasa del cuerpo no es necesario tomarlas todos los días por lo que es posible, tras un consumo suficiente, subsistir una época sin su aporte.
Si se consumen en exceso (más de 10 veces las cantidades recomendadas) pueden resultar tóxicas. Esto les puede ocurrir sobre todo a deportistas, que aunque mantienen una dieta equilibrada recurren a suplementos vitamínicos en dosis elevadas, con la idea de que así pueden aumentar su rendimiento físico. Esto es totalmente falso, así como la creencia de que los niños van a crecer si toman más vitaminas de las necesarias.
Las Vitaminas Liposolubles son:
Vitamina A (Retinol)
Vitamina D (Calciferol)
Vitamina E (Tocoferol)
Vitamina K (Antihemorrágica)
VITAMINA C. Ácido Ascórbico. Antiescorbútica.
VITAMINA B1. Tiamina. Antiberibérica.
VITAMINA B2. Riboflavina.
VITAMINA B3. Niacina. Ácido Nicotínico. Vitamina PP. Antipelagrosa.
VITAMINA B5. Ácido Pantoténico. Vitamina W.
VITAMINA B6. Piridoxina.
VITAMINA B8. Biotina. Vitamina H.
VITAMINA B9. Ácido Fólico.
VITAMINA B12. Cobalamina.
Una adecuada alimentación es la fuente perfecta de vitaminas, minerales y demás elementos necesarios para un buen desarrollo.
Todas las vitaminas son importantes ya que cada una de ellas desempeña papeles diferentes, una sola vitamina no puede sustituir a las demás ya que no poseen propiedades iguales.
La carencia de vitaminas puede conducirnos a contraer graves enfermedades que evitaríamos con una balanceada alimentación, cuidándonos de no consumir unas en exceso y otras en poca o nula cantidad.
La millonaria industria vitamínica crece a medida que se dan más descubrimientos científicos. La demanda de suplementos vitamínicos conduce a tener grandes reservas de éste.
Debe hacerse un control sanitario más estricto a las vitaminas de farmacia para corroborar su calidad y que si se cumplan las expectativas brindadas por el fabricante.
PROTEINAS
Ser esenciales para el crecimiento. Las grasas y carbohidratos no las pueden sustituir, por no contener nitrógeno.
Proporcionan los aminoácidos esenciales fundamentales para la síntesis tisular.
Son materia prima para la formación de los jugos digestivos, hormonas, proteínas plasmáticas, hemoglobina, vitaminas y enzimas.
Funcionan como amortiguadores, ayudando a mantener la reacción de diversos medios como el plasma.
Actúan como catalizadores biológicos acelerando la velocidad de las reacciones químicas del metabolismo. Son las enzimas.Actúan como transporte de gases como oxígeno y dióxido de carbono en sangre. (hemoglobina).
Actúan como defensa, los anticuerpos son proteínas de defensa natural contra infecciones o agentes extraños.Permiten el movimiento celular a través de la miosina y actina (proteínas contráctiles musculares).
Resistencia. El colágeno es la principal proteína integrante de los tejidos de sostén.
Energéticamente, las proteínas aportan al organismo 4 Kcal de energía por cada gramo que se ingiere.
- Las proteínas son clasificables según su estructura química en:
Proteínas simples: Producen solo aminoácidos al ser hidrolizados.Albúminas y globulinas: Son solubles en agua y soluciones salinas diluidas (ej.: lactoalbumina de la leche).Glutelinas y prolaninas: Son solubles en ácidos y álcalis, se encuentran en cereales fundamentalmente el trigo. El gluten se forma a partir de una mezcla de gluteninas y gliadinas con agua.Albuminoides: Son insolubles en agua, son fibrosas, incluyen la queratina del cabello, el colágeno del tejido conectivo y la fibrina del coagulo sanguíneo.Proteínas conjugadas: Son las que contienen partes no proteicas. Ej.: nucleoproteínas.Proteínas derivadas: Son producto de la hidrólisis.
En el metabolismo, el principal producto final de las proteínas es el amoníaco (NH3) que luego se convierte en urea (NH2)2CO2 en el hígado y se excreta a través de la orina.
martes, 2 de marzo de 2010
LIPIDOS
Los lípidos son un conjunto de moléculas orgánicas, la mayoría biomoléculas, compuestas principalmente por carbono e hidrógeno y en menor medida oxígeno, aunque también pueden contener fósforo, azufre y nitrógeno, que tienen como característica principal el ser hidrofóbicas o insolubles en agua y sí en disolventes orgánicos como la bencina, el alcohol, el benceno y el cloroformo. En el uso coloquial, a los lípidos se les llama incorrectamente grasas, ya que las grasas son sólo un tipo de lípidos procedentes de animales. Los lípidos cumplen funciones diversas en los organismos vivientes, entre ellas la de reserva energética (triglicéridos), la estructural (fosfolípidos de las bicapas) y la reguladora (esteroides).
Los lípidos son biomoléculas muy diversas; unos están formados por cadenas alifáticas saturadas o insaturadas, en general lineales, pero algunos tienen anillos (aromáticos). Algunos son flexibles, mientras que otros son rígidos o semiflexibles hasta alcanzar casi una total flexibilidad molecular; algunos comparten carbonos libres y otros forman puentes de hidrógeno.
La mayoría de los lípidos tiene algún tipo de carácter polar, además de poseer una gran parte apolar o hidrofóbico ("que le teme al agua" o "rechaza al agua"), lo que significa que no interactúa bien con solventes polares como el agua. Otra parte de su estructura es polar o hidrofílica ("que ama el agua" o "que tiene afinidad por el agua") y tenderá a asociarse con solventes polares como el agua; cuando una molécula tiene una región hidrófoba y otra hidrófila se dice que tiene carácter anfipático. La región hidrófoba de los lípidos es la que presenta solo átomos de carbono unidos a átomos de hidrógeno, como la larga "cola" alifática de los ácidos grasos o los anillos de esterano del colesterol; la región hidrófila es la que posee grupos polares o con cargas eléctricas, como el hidroxilo (–OH) del colesterol, el carboxilo (–COO–) de los ácidos grasos, el fosfato (–PO4–) de los fosfolípidos, etc.
Los lípidos son un grupo muy heterogéneo que usualmente se clasifican en dos grupos, atendiendo a que posean en su composición ácidos grasos (lípidos saponificables) o no lo posean (lípidos insaponificables).
- Simples. Lípidos que sólo contienen carbono, hidrógeno y oxígeno.
- Acilglicéridos. Cuando son sólidos se les llama grasas y cuando son líquidos a temperatura ambiente se llaman aceites.
- Céridos (ceras)
- Complejos. Son los lípidos que además de contener en su molécula carbono, hidrógeno y oxígeno, también contienen otros elementos como nitrógeno, fósforo, azufre u otra biomolécula como un glúcido. A los lípidos complejos también se les llama lípidos de membrana pues son las principales moléculas que forman las membranas celulares.
Los lípidos desempeñan diferentes tipos de funciones biológicas:
- Función de reserva energética. Los triglicéridos son la principal reserva de energía de los animales ya que un gramo de grasa produce 9,4 kilocalorías en las reacciones metabólicas de oxidación, mientras que las proteínas y los glúcidos sólo producen 4,1 kilocalorías por gramo.
- Función estructural. Los fosfolípidos, los glucolípidos y el colesterol forman las bicapas lipídicas de las membranas celulares. Los triglicéridos del tejido adiposo recubren y proporcionan consistencia a los órganos y protegen mecánicamente estructuras o son aislantes térmicos.
- Función reguladora, hormonal o de comunicación celular. Las vitaminas liposolubles son de naturaleza lipídica (terpenos, esteroides); las hormonas esteroides regulan el metabolismo y las funciones de reproducción; los glucolípidos actúan como receptores de membrana; los eicosanoides poseen un papel destacado en la comunicación celular, inflamación, respuesta inmune, etc.
- Función transportadora. El transporte de lípidos desde el intestino hasta su lugar de destino se realiza mediante su emulsión gracias a los ácidos biliares y a las lipoproteínas
CARBOHIDRATOS
Los carbohidratos, también llamados glúcidos, se pueden encontrar casi de manera exclusiva en alimentos de origen vegetal. Constituyen uno de los tres principales grupos químicos que forman la materia orgánica junto con las grasas y las proteínas.
Los carbohidratos son los compuestos orgánicos más abundantes de la biosfera y a su vez los más diversos. Normalmente se los encuentra en las partes estructurales de los vegetales y también en los tejidos animales, como glucosa o glucógeno. Estos sirven como fuente de energía para todas las actividades celulares vitales.
Aportan 4 kcal/gramo al igual que las proteínas y son considerados macro nutrientes energéticos al igual que las grasas. Los podemos encontrar en una innumerable cantidad y variedad de alimentos y cumplen un rol muy importante en el metabolismo. Por eso deben tener una muy importante presencia de nuestra alimentación diaria
Los glúcidos son compuestos formados en su mayor parte por átomos de carbono e hidrógeno y en una menor cantidad de oxígeno. Los glúcidos tienen enlaces químicos difíciles de romper llamados covalentes, mismos que poseen gran cantidad de energía, que es liberada al romperse estos enlaces. Una parte de esta energía es aprovechada por el organismo consumidor, y otra parte es almacenada en el organismo.
En la naturaleza se encuentran en los seres vivos, formando parte de biomoléculas aisladas o asociadas a otras como las proteínas y los lípidos.
Los glúcidos se dividen en monosacáridos, disacáridos, oligosacáridos y polisacáridos.
Monosacáridos
Los glúcidos más simples, los monosacáridos, están formados por una sola molécula; no pueden ser hidrolizados a glúcidos más pequeños. La fórmula química general de un monosacárido no modificado es (CH2O)n, donde n es cualquier número igual o mayor a tres, su limite es de 6 carbonos. Los monosacáridos poseen siempre un grupo carbonilo en uno de sus átomos de carbono y grupos hidroxilo en el resto, por lo que pueden considerarse polialcoholes.
Los monosacáridos se clasifican de acuerdo a tres características diferentes: la posición del grupo carbonilo, el número de átomos de carbono que contiene y su quiralidad. Si el grupo carbonilo es un aldehído, el monosacárido es una aldosa; si el grupo carbonilo es una cetona, el monosacárido es una cetosa. Los monosacáridos más pequeños son los que poseen tres átomos de carbono, y son llamados triosas; aquéllos con cuatro son llamados tetrosas, lo que poseen cinco son llamados pentosas, seis son llamados hexosas y así sucesivamente. Los sistemas de clasificación son frecuentemente combinados; por ejemplo, la glucosa es una aldohexosa (un aldehído de seis átomos de carbono), la ribosa es una aldopentosa (un aldehído de cinco átomos de carbono) y la fructosa es una cetohexosa (una cetona de seis átomos de carbono).
Cada átomo de carbono posee un grupo de hidroxilo (-OH), con la excepción del primero y el último carbono, todos son asimétricos, haciéndolos centros estéricos con dos posibles configuraciones cada uno (el -H y -OH pueden estar a cualquier lado del átomo de carbono). Debido a esta asimetría, cada monosacárido posee un cierto número de isómeros. Por ejemplo la aldohexosa D-glucosa, tienen la fórmula (CH2O)6, de la cual, exceptuando dos de sus seis átomos de carbono, todos son centros quirales, haciendo que la D-glucosa sea uno de los estereoisómeros posibles. En el caso del gliceraldehído, una aldotriosa, existe un par de posibles esteroisómeros, los cuales son enantiómeros y epímeros (1,3-dihidroxiacetona, la cetosa correspondiente, es una molécula simétrica que no posee centros quirales). La designación D o L es realizada de acuerdo a la orientación del carbono asimétrico más alejados del grupo carbonilo: si el grupo hidroxilo está a la derecha de la molécula es un azúcar D, si está a la izquierda es un azúcar L. Como los D azúcares son los más comunes, usualmente la letra D es omitida.
Disacáridos
Los disacáridos son glúcidos formados por dos moléculas de monosacáridos y, por tanto, al hidrolizarse producen dos monosacáridos libres. Los dos monosacáridos se unen mediante un enlace covalente conocido como enlace glucosídico, tras una reacción de deshidratación que implica la pérdida de un átomo de hidrógeno de un monosacárido y un grupo hidroxilo del otro monosacárido, con la consecuente formación de una molécula de H2O, de manera que la fórmula de los disacáridos no modificados es C12H22O11.
Oligosacáridos
Los oligosacáridos están compuestos por entre tres y nueve moléculas de monosacáridos que al hidrolizarse se liberan. No obstante, la definición de cuan largo debe ser un glúcido para ser considerado oligo o polisacárido varía según los autores. Según el número de monosacáridos de la cadena se tienen los trisacáridos (como la rafinosa ), tetrasacárido (estaquiosa), pentasacáridos, etc.
Los oligosacáridos se encuentran con frecuencia unidos a proteínas, formando las glucoproteínas, como una forma común de modificación tras la síntesis proteica. Estas modificaciones post traduccionales incluyen los oligosacáridos de Lewis, responsables por las incompatibilidades de los grupos sanguíneos, el epítope alfa-Gal responsable del rechazo hiperagudo en xenotrasplante y O-GlcNAc modificaciones.
Polisacáridos
Los polisacáridos son cadenas, ramificadas o no, de más de diez monosacáridos. Los polisacáridos representan una clase importante de polímeros biológicos. Su función en los organismos vivos está relacionada usualmente con estructura o almacenamiento. El almidón es usado como una forma de almacenar monosacáridos en las plantas, siendo encontrado en la forma de amilosa y la amilopectina (ramificada). En animales, se usa el glucógeno en vez de almidón el cual es estructuralmente similar pero más densamente ramificado. Las propiedades del glucógeno le permiten ser metabolizado más rápidamente, lo cual se ajusta a la vida activa de los animales con locomoción.
La celulosa y la quitina son ejemplos de polisacáridos estructurales. La celulosa es usada en la pared celular de plantas y otros organismos y es la molécula más abundante sobre la tierra. La quitina tiene una estructura similar a la celulosa, pero tiene nitrógeno en sus ramas incrementando así su fuerza. Se encuentra en los exoesqueletos de los artrópodos y en las paredes celulares de muchos hongos. Tiene diversos de usos, por ejemplo en hilos para sutura quirúrgica. Otros polisacáridos incluyen la callosa, la lamiña, la rina, el xilano y la galactomanosa.
Los polisacáridos resultan de la condensación de muchas moléculas de monosacáridos con la pérdida de varias moléculas de agua. Su fórmula empírica es: (C6 H10 O5)n.
Los glúcidos representan las principales moléculas almacenadas como reserva en los vegetales. Los vegetales almacenan grandes cantidades de almidón producido a partir de la glucosa elaborada por fotosíntesis, y en mucha menor proporción, lípidos (aceites vegetales).
Los animales almacenan básicamente triglicéridos (lípidos). Al contrario que los glúcidos, los lípidos sirven para almacenar y obtener energía a más largo plazo. También almacenan cierta cantidad de glucógeno, sobre todo en el músculo y en el hígado. Aunque muchos tejidos y órganos animales pueden usar indistintamente los glúcidos y los lípidos como fuente de energía, otros, principalmente los eritrocitos y el tejido nervioso (cerebro), no pueden catabolizar los lípidos y deben ser continuamente abastecidos con glucosa.
En el tubo digestivo los polisacáridos de la dieta (básicamente almidón) son hidrolizados por las glucosidasas de los jugos digestivos, rindiendo monosacáridos, que son los productos digestivos finales; éstos son absorbidos por las células del epitelio intestinal e ingresan en el hígado a través de la circulación portal, donde, alrededor del 60%, son metabolizados. En el hígado, la glucosa también se puede transformar en lípidos que se transportan posteriormente al tejido adiposo.
El músculo es un tejido en el que la fermentación representa una ruta metabólica muy importante ya que las células musculares pueden vivir durante largos períodos de tiempo en ambientes con baja concentración de oxígeno. Cuando estas células están trabajando activamente, su requerimiento de energía excede su capacidad de continuar con el metabolismo oxidativo de los hidratos de carbono puesto que la velocidad de esta oxidación está limitada por la velocidad a la que el oxígeno puede ser renovado en la sangre. El músculo, al contrario que otros tejidos, produce grandes cantidades de lactato que se vierte en la sangre y retorna al hígado para ser transformado en glucosa.
Por lo tanto las principales rutas metabólicas de los glúcidos son:
- Glicólisis. Oxidación de la glucosa a piruvato.
- Gluconeogénesis. Síntesis de glucosa a partir de precursores no glucídicos.
- Glucogénesis. Síntesis de glucógeno.
- Ciclo de las pentosas. Síntesis de pentosas para los nucleótidos.
En el metabolismo oxidativo encontramos rutas comunes con los lípidos como son el ciclo de Krebs y la cadena respiratoria. Los oligo y polisacáridos son degradados inicialmente a monosacáridos por enzimas llamadas glicósido hidrolasas. Entonces los monosacáridos pueden entrar en las rutas catabólicas de los monosacáridos.
La principal hormona que controla el metabolismo de los hidratos de carbono es la insulina.
miércoles, 10 de febrero de 2010
EL AGUA
- Acción disolvente.
- Fuerza de cohesión entre sus moléculas.
- Elevada fuerza de adhesión.
- Gran calor específico.
- Elevado calor de vaporización.
- Elevada constante dieléctrica.
- Ionización del agua y escala de pH.
El carácter bipolar del agua se debe a que los dos electrones de los dos hidrógenos están desplazados hacia el átomo de oxígeno, por lo que en la molécula aparece un polo negativo, donde está el oxígeno, debido a la mayor densidad electrónica, y dos polos positivos, donde están los dos hidrógenos, debido a la menor densidad electrónica.
Entre los dipolos del agua se establecen fuerzas de atracción llamados puentes de hidrógeno, formándose grupos de 3-9 moléculas. Con ello se consiguen pesos moleculares elevados y el agua se comporta como un líquido.
El agua es el componente principal de la estructura celular de los seres vivos el agua constituye de 70 a 85% del peso de muchas células, además, los fluidos extracelulares como la sangre, el líquido cefalorraquídeo, la saliva, la orina y las lágrimas están hechos a base de agua.
El protoplasma, que es la materia básica de las células vivas, consiste en una disolución de agua, de sustancias grasas, carbohidratos, proteínas, sales y otros compuestos químicos similares.
Dada la importancia del agua para la vida de todos los seres vivos, y debido al aumento de las necesidades de ella por el continuo desarrollo de la humanidad, el hombre está en la obligación de proteger este recurso y evitar toda influencia nociva sobre las fuentes del preciado líquido.